A local convergence theorem for the super-halley method in a Banach space
نویسندگان
چکیده
منابع مشابه
A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions
We present a unified local convergence analysis for Chebyshev-Halleytype methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Chebyshev; Halley; super-Halley and other high order methods. The convergence ball and error estimates are given for these methods under the same conditions. Numerical examples are also provided in this stu...
متن کاملNewton-Kantorovich convergence theorem of a new modi“ed Halley's method family in a Banach space
A Newton-Kantorovich convergence theorem of a new modified Halley’s method family is established in a Banach space to solve nonlinear operator equations. We also present the main results to reveal the competence of our method. Finally, two numerical examples arising in the theory of the radiative transfer, neutron transport and in the kinetic theory of gasses are provided to show the applicatio...
متن کاملA note on the modified super-Halley method
There are many methods for solving nonlinear algebraic equations. Some of these methods are just rediscovered old ones. In this note we show that the modified super Halley scheme is the same as one of Jarratt’s methods. Published by Elsevier Inc.
متن کاملOn the strong convergence theorems by the hybrid method for a family of mappings in uniformly convex Banach spaces
Some algorithms for nding common xed point of a family of mappings isconstructed. Indeed, let C be a nonempty closed convex subset of a uniformlyconvex Banach space X whose norm is Gateaux dierentiable and let {Tn} bea family of self-mappings on C such that the set of all common fixed pointsof {Tn} is nonempty. We construct a sequence {xn} generated by the hybridmethod and also we give the cond...
متن کاملLocal Convergence for an Improved Jarratt-type Method in Banach Space
— We present a local convergence analysis for an improved Jarratt-type methods of order at least five to approximate a solution of a nonlinear equation in a Banach space setting. The convergence ball and error estimates are given using hypotheses up to the first Fréchet derivative in contrast to earlier studies using hypotheses up to the third Fréchet derivative. Numerical examples are also pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1994
ISSN: 0893-9659
DOI: 10.1016/0893-9659(94)90071-x